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In making certain investigations on the properties of the sound-wave, transmitted
through a small horizontal tube of uniform bore, I found reason for thinking that the

%=F<%)............(1.)

must always be satisfied; F being a function of a form to be determined. Differen-
tiating this equation with regard to ¢, we find

dﬁ_{F’(j@} L (2)

which by means of the arbitrary function I can be made to coincide, not only with the
ordinary dynamical equation of sound, but with any dynamical equation in which the

equation

ratio of % and gp—z can be expressed in terms of %

Equation (1.) is a partial first integral of (2.), and by means of it we shall be able to
obtain a final integral of (2.), which will be shown to be the general integral of (2.) for
wave-motion, propagated in one direction only in such a tube as we have supposed, by

its satisfying all the conditions of such wave-motion.
It will be convenient to begin with the simplest case of sound,—that in which the

development of heat and cold is neglected.

I. WAVE-MOTION WHEN CHANGE OF TEMPERATURE IS NEGLECTED.

1. The equations for this case of motion are, the dynamical equation

dy\? d% d% .
<d¢Z’> dtg—luld.z’g, . . . . . . . . . . (3,)
and the equation of continuity, .
dy e
dz. = 'EO ’ . . . . . . . . . . . (4,)

e, Po are the equilibrium density and pressure at any point of the fluid; ¢, p the same
for a particle in motion; & the equilibrium distance of the same particle from a fixed
plane cutting the tube at right angles; and 7 is the time when the same particle, being
in motion, is at the distance y from the same plane; w is the constant which connects ¢
and p by BoyLE’S law p=pe.

* Subsequently recast and abridged by the author, but without introducing new matter.
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On comparing (3.) with (2.), we find Z—Z ¥ (%) =+4+/p; or, for brevity, writing « for

d
d_?;» , we have

F'(O&):-_‘- i;,
and oo Fe)=CH/plog(e).

But as %:F(o&) from (1.), it follows that

ly=2 da+%. s

= adx+F(06) . dt,

which being integrated in the usual manner, substituting at the same time for F(«) its
value, gives

y=ar+(Ct/ploga)t+o(«) ] (5)
O=aw+~/pt+20(2) J

Between these equations, if we eliminate «, we have then the integral of equation (3.).

2. From equation (4.) we see that u:%‘-; and if we represent by » the velocity of the
particle whose place is y, we find

d: —
u:ﬁ.—_ C++/p loga,

=0tn/plog (%)

u—C

and g=goe¥ Vi,
3. To determine the arbitrary constant C, we observe that p—=g, and u=C are always
simultaneous equations. But the former belongs to the confines of the wave, where in

fact u=0; and therefore C=0. Hence for a wave transmitted through a medium which
is itself at rest beyond the limits of the wave, we have these equations*:—

g:goex%ﬁ. . e .. . . e .. . . (6)

ymart/plogeite@| (7.)
0=0x-A/ pit+ag(x) J

* If # and « be eliminated between the equations (7.) and =+ # 1 logs &, we shall obtain the equation
w=f{y—(u+ vt}

which was first obtained, thoughin a very different manner from that employed in this paper, by M. Po1ssox,
and printed in the Journal of the Polytechnique School, tome vii. It seems not to have occurred to him,
however, that by means of this equation he might effect another integration of the equations of fluid motion,
and thus discover the relation between p and », whereby his solution would have been completed.

Several of the properties of wave-motion, depending on the gradual change of type, which are included
in this equation of M. Porsson’s, were first brought forward and discussed by Professor SToxes in the
Philosophical Magazine for November 1848, and by the Astronomer Royal in June 1849. In the latter
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4. We have now to express these results in terms of the original genesis of the
motion. Let us suppose the motion generated by a piston pushed forwards in the tube
in a given manner. Let the piston at the time T (having the same origin as ) be at
the distance Y from the plane of reference, and moving forwards with the velocity U ;
and by R denote the density of the air in contact with the piston at that moment. For
all particles in contact with the piston 2=0 (we suppose the piston to commence its
motion at the origin of #). Then since at the time T the particles in contact with the
piston are within the limits of the wave, equations (6.) and (7.) must be satisfied ;

R-—"‘-Eoe;%‘
Y=£Vploge T+e(@)] (g)
0 ==4+/uT+a¢() J

In these equations «'= “R’ and at present we have not sufficiently connected the two

systems of equations (7.) and (8.). We shall further connect them by assuming R=p,
which gives «'=e; the effect of which assumption is to limit the meaning of T, Y, U
as follows :—
T is the time of genesis of the density ¢ which at the time # has been trans-
mitted to the place denoted by ¥;
Y is the place where the density ¢ was generated ;
U is the velocity of the piston when ¢ was generated by it.

‘We may now write o for «/, and then eliminate «, ¢(«), and ¢'(«) between the four
equations (7.), (8.). By this means we obtain

y=Y4+UFE/w)(t=T). . . . . . . . . (9)
o= TN A (E=T). . . . . ... (10)
g:goe;%zgof'«%. B ¢ 5 Y

5. By these equations the state of a wave at any moment is connected with its genesis;
and they contain in fact the complete solution of the problem of every kind of motion,
in a tube, which can be generated by a piston.

6. From (11.) it appears that w="1U; that is, that the particle-velocity generated by
the piston is transmitted through the medium without suffering any alteration. The
same equation (11.) shows that between the density and the velocity there is an inva-
riable relation, which is independent of the law of original genesis of the motion; so
that in the same wave, or in different waves, wherever there is the same density, there
will also be the same velocity.

7. One of the most obvious facts on looking at the equations just found is, that for
the same genesis there are fwo values of @, two of 7, and two of ¢. The signification of

Number of the Magazine it also appears that Professor Dz Moreax had discovered and communicated to
the Astronomer Royal two particular forms of the function F'; without perceiving, however, that a slight
generalization of his results would put him in the way to the integral expressed by the equations (5.).

T2
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this is, that a single disturbance generates fwo waves; and (11.) shows that for one of
them ¢ is greater, and for the other less than g, Equation (10.) shows that they are
propagated in contrary directions on opposite sides of the piston, and are therefore not
parts of the same wave.

8. In the genesis of the wave we have supposed the piston pushed forwards, that is,
in the direction of 4. Hence for the wave generated on that side of the piston we
must, as appears from (10.), take the lower sign, which in (11.) gives ¢ greater than g,.
This wave we call the positive wave, and the wave of condensation. For the wave gene-
rated on the other side of the piston we must take the upper sign, which gives ¢ less
than ¢,; and this wave we call the negative wave, and the wave of rarefaction.

9. As it will be useful to have a definition of these two waves, which shall be inde-
péndent of their position with regard to the generating piston, we may state that in
general,—

a positive wave is one in which the motions of the particles are in the direction of
wave-transmission: and

a megative wave is one in which the motions of the particles are in a direction
opposite to that of wave transmission.

10. If ¢, and g, be the densities of the air in contact with the piston before and
behind at any moment, and if p, and p, be the corresponding pressures; then from (11.)

we have
U

— U
§1=505N/;’) and €2=§05——‘/_—l“-—a

and o P8 =00

which may be thus expressed in words:—if a piston move in a tube, filled with air, in
any manner whatever, the densities of the air in contact with it at its front and back
are such that the equilibrium density is a mean proportional between them.* And since
p=we, we have p,p,=p;, which furnishes us with a similar property for the pressures on
the piston.

A U
11. Since p,=pV* and p,=p¢ V&, it follows that the resistance to the motion of the

piston (calling S its area) is
z U
(Pi=po)S=(e%—s)psS.
Hence in different gases, if p, be the same in all, those will offer the greatest resistance
to the piston for which w is the least.
It will be convenient from this point to consider the two kinds of waves separately.

1. The Wave of Condensation.

12. The equations for this wave are

y=Y+(/w+U)t-T)
x:JﬁsVlﬁ(t—T)

RN
e=p, V"
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13. Now with respect to the genesis of this wave, we have seen that U must satisfy
.. d, .
the same conditions as %, and Y asy. But u= 7‘3, therefore U=Z—¥: and again, as

one of the equations of the general integral (7.) was obtained from the other by dif-
ferentiation with regard to «, it follows that both « and U must vary continuously; and

that %% must not pass through infinity; in other words, if the velocity of the piston

vary it must vary continuously. Neither Y nor U must be discontinuous with regard
to T. Hence there must be no discontinuity of pressure within the limits of the wave
at its genesis: and if discontinuity should afterwards occur in the wave during its trans-
mission, our equations will cease to be applicable for that part of the wave where the
discontinuity has occurred. For the wave in any one position may be supposed to
generate its next position; and a piston or diaphragm may at any time be supposed to
act the part of the generating wave. "What is necessary for the diaphragm to observe as
a law of genesis must be necessary for the wave considered as the generator of its next
position ; and therefore the part of the wave (if any) where dlscontmmty occurs will
be beyond the reach of our equations.

14. It has been shown that the density ¢, which at the time # is at the distance y from
the plane of reference, was generated at the time T when its distance from the same
plane was Y. Hence it has been transmitted through the space y—7Y in the time #—T,
and consequently the velocity of its transmission (as appears from the first equation of

(12.)) is p+T.

15. The wave as a whole is included between two points of it for each of which U=0,
and consequently for each of those points the velocity of transmission is /. Hence
the wave as a whole is transmitted with this uniform velocity. But all the parts of the
wave, with the exception of its front and rear, are transmitted with velocities greater
than this,—with velocities dependent on their respective densities. Hence every part
of the wave, with the exception of its rear, is perpetually gaining on the front, and the
result is a constant change of type,—the more condensed parts hurrying towards the
front, with velocities greater as their densities are greater. This cannot go on perpe-
tually without its happening at length that a dore (or tendency to a discontinuity of
pressure) will be formed in front; which will force its way, in violation of our equations,
faster than at the rate of »/u feet per second; and consequently in experiments, made
on sound at long distances from the origin of the sound-wave, we should expect the
actual velocity observed to be greater than A/ w, especially if the sound be a violent one,
generated with extreme force (see art. 17).

16. We have seen that the velocity of transmission of the dens1ty eisa/p+U. Now
the velocity of the particles where the density is ¢ is %, which we have shown to be equal
to U. In a certain sense we may consider the velocity » to be a wind-velocity in that
part of the medium, and then we have an indefinitely small disturbance at that point
transmitted in that wind with the velocity o/ imposed upon the wind. In other
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words, transmission-velocity is superimposed on particle-velocity, and in this sense
transmission-velocity is everywhere the same, and equal to /. A wave passes by
every particle with this velocity, whatever be the particular and varying density of the
medium where the particle is situated.

17. Since a wave’s front cannot move faster than with the velocity /g, if the gene-
rating piston move faster than with this velocity, it will generate a bore; and from this
we infer that a bore always moves with a velocity greater than /w; for wherever a bore
may be situated at anmy time, we may suppose it to be just generated by a piston. If
we write o/ for U, we find p=pe=pge=¢p,. Consequently if the piston press upon
the resisting air with a pressure exceeding ¢ atmospheres, a bore will be instantly formed.

I have defined a bore to be a fendency to discontinuity of pressure; and it has been
shown that as a wave progresses such a tendency necessarily arises. As, however, dis-
continuity of pressure is a physical impossibility, it is certain Nature has a way of avoid-
ing its actual occurrence. To examine in what way she does this, let us suppose a discon-
tinuity to have actually occurred at the point A, in a wave which is moving forwards.
Imagine a film of fluid at A forming a section at right angles to the tube. Then on
the back of this film there is a certain pressure which is discontinuous with respect to
the pressure on its front. To restore continuity of pressure, the film at A will rush for-
ward with a sudden increase of velocity, the pressure in the front of the film not being
sufficient to preserve continuity of velocity. In so doing the film will play the part
of a piston generating a bit of wave in front, and a small regressive wave behind. The
result will be a prolongation of the wave’s front, thereby increasing the original length
of the wave, and producing simultaneously a feeble regressive wave of a negative
character.

Now all this supposes the discontinuity to have actually occurred, which, as has been
said, is a physical impossibility. For actual occurrence we must therefore substitute a
tendency to occur, and modify the preceding reasoning thus:—

Nature so contrives, that as the discontinuity is in its initial stage of beginning to
take place, its actual occurrence is prevented by a gradual (not sudden) prolongation of
the wave’s front, and by the constant casting off, from its front in a retrogressive direc-
tion, of a long continuous wave of a negative character, which will be of greater or less
intensity according as the tendency to discontinuity is more or less intense in the
original wave.

The casting off of this long wave will probably manifest itself audibly as a continuous
hiss or rushing sound.

Hence a sound-wave, from the moment that a tendency to discontinuity begins in its
front, has the property of constantly prolonging itself in front, and by this means its
front travels faster than at the rate /. Those sounds also will travel most rapidly
whose genesis was most violent; and gentlest sounds travel with velocities not much
differing from o/. T should expect, therefore, that in circumstances where the human
voice can be heard at a sufficiently great distance, the command to fire a gun, if instantly
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obeyed, and the report of the gun, might be heard at a long distance in an inverse order ;
i. e. first the report of the gun, and Zhen the word *fire*.” 1In a slight degree, therefore,
the experimental velocity of sound will depend on its intensity, and the violence of its
genesis. I consider this article as tending to account for the discrepancy between the
caleulated and observed velocities of sound (which most experimentalists have remarked
and wondered at), when allowance is made (as will be done in a future part of this paper)
for change of temperature.

18. It seems reasonable to suppose that the audible character of a wave is in some
way dependent on its type; and consequently, if this be the case, the sound undergoes
a perpetual modification as the distance of transmission increases. One modification of
the sound-wave is, as we have seen, the formation of a bore in front ; but there is another
which cannot but have some influence on its audible properties, as it corresponds to a
remarkable change of type; and this takes place when the greater densities begin to
overtake the less.

Now when one degree of density overtakes another, the values of y corresponding to
those two densities are equal ; and hence at the time ¢ the equation

y=Y+W/p+U)E=T) . . . .. (12)

will give two equal values of y for two consecutive values of T. Hence differentiating it
with regard to T, remembering that ¢ is constant, or the same for both, as is also ¥, we have

0=U— (/4 U)+(¢—T) s

or

t=Tb . L (18)
aT
The right-hand member of this equation is of course a continuous expression, and there-
fore its least or minimum value will be the value of Z when the modification of type, of
which we are speaking, first begins to take place; and because of the continuity of (13.),
this modification once begun will gradually spread itself over the fore-part of the wave.
Now # will be a minimum when
dU\* _ d2U
() =+-ar
From this equation we may find T, the time of genesis of that part of the wave where
this modification begins. Then (13.) will give ¢, the actual time when the modification
begins; and (12.) will give the place in the tube where it begins.
19. It is perhaps impossible to say what is the audible characteristic corresponding to
the wave-modification just investigated ; but whatever it be, we perceive from (13.) that

. . ., dU . .
those sound-waves soonest begin to be affected by it for which — is largest; . e. those

* See Supplement to Appendix of PArrY’s Voyage in 1819-20, Art. “ Abstract of Experiments to deter-
mine the Velocity of Sound.”
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whose genesis is most violent. And we may also consider it as proved that those
sounds will retain their original characteristics the longest which are the most gently
generated.

It is also quite evident from (13.) if the same cause generate sound-waves in different
tubes filled with different gases, the wave will be soonest affected by the above modifi-
cation in that tube which contains the gas for which w is least.

We come now to speak of

2. The Wave of Rarefaction.

20. We shall obtain the equations for this kind of wave by writing —U for 4-U in
the equations of art. 12, which is equivalent to supposing a negative wave generated
on the -4y side of the piston. Hence the equations of a negative wave are

y=Y+(/p=TU)(t=T),
o=/ (0= T),
e =es k.

21. Reasoning in the same manner as in art. 14, it appears that the velocity with
which the density ¢ is transmitted is B
Vu—=T.

From this it appears that, speaking generally, the velocity of transmission of every part
of a negative wave is less than of every part of a positive wave. The exceptions to this
statement are the front and rear, which in both kinds of waves move with the same
velocity o/, because for those points U=0. It is evident also that the most rarefied
parts of a wave will be transmitted the most slowly, and will consequently drop con-
tinually towards the rear. Hence in this species of wave, as in the former, a constant
change of type takes place; and in the end also a negative or rarefied bore will be formed
in the rear of the wave.

By a process of reasoning analogous to that of art. 17, we infer that a negative
sound-wave, from the moment that a tendency to discontinuity begins in its rear, has
the property of constantly shortening its rear, and by this means its rear travels faster
than at the rate \/ ‘E; and also as it progresses it is constantly casting off from its rear
in a regressive direction a long continuous wave of a negative character. Art. 18 also
admits of easy modification to this kind of wave.

22. The velocity of transmission of a negative wave being o/ —TU, and the last term
of this expression admitting of arbitrary increase, it is evident that U=+/p is a critical
value, and that the part of the wave corresponding to that value of U is stationary.
%o

The corresponding value of ¢ is =2

Every part of the wave where the density exceeds this travels forwards; but the parts
where the density is less than this are regressive; hence a wave, as a whole, in which e
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begins at ¢,, and after twice passing through e—: ends at g,, will have two stationary points
%o,

in its type, viz. those where ¢== Between these points the wave will be stationary

though constantly changing type; beyond them progressive.

23. But instead of supposing the piston to generate such a wave as this, let us sup-
pose it to begin from the velocity zero, and according to any proposed law (continuous
of course) increase its velocity till it becomes infinite; and let us consider the state of
the medium at this moment.

Denote by A and B the places of the piston where its velocity became respectively
»/ @ and infinite. Then whatever was the law of motion from A to B, and whether AB
be great or small, provided it remains of finite length, the density at A will remain

unchanged and equal to %Q, and the velocity of every particle as it passes by A will be
equal to n/p. The mass of air also which will rush through the section of the tube at

A will be Sg‘):/’* ; and this, be it observed, cannot be made either more or less by causing

the piston to move in a different manner from A to B. It is also equally independent
of the law of the piston’s motion before it reached A. Hence the mass of air that flows
through the section at A is altogether independent of the law of the piston’s motion
throughout its whole course.

24. Now let us inquire what quantity of air rushes through any other section of the
tube. In every part where there is motion the same relation between density and velo-

city obtains, viz. p=g,¢ V#; and éonsequently the quantity which rushes through any
section is at the rate of

Sequs & per second.
It is obvious this admits of a maximum value, which in the usual manner we find to be

Seo ‘/!-—'-,

&
. _ — _ _@
at which value u=+/p and g==
25. Hence one part of the tube cannot supply air to another part faster than at this

rate; and consequently the greatest possible mass of air passes through the section at A :
and it may be stated as a general property of motion through a tube, that a gas cannot

be conveyed through a tube faster than at the rate of S t/“ cubic feet per second of gas

of the density g,.

Hence the escaping powers of different gases through equal tubes are proportional to
the velocities with which they respectively transmit sound.

26. Since this result is independent of the law of velocity of the air, both before and
after passing the section A, we are entitled to say that air cannot rush through a pipe

of finite length, even into a vacuum, faster than at the rate of S—-:—/-”-‘ cubic feet per

MDCCCLX. U
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second. The length of the pipe seems to be a matter of perfect indifference, and may
be nothing more than a hole through a partition of finite thickness.

27. Since one part of a tube cannot supply air to, nor convey air away from, another
part, A, faster than at the maximum rate, it is easy to see that if the pipe be supposed
of finite length, which conveys air into a vacuum, the velocity in every part of the
pipe will soon be the same throughout, and equal to o/, and density everywhere equal

togg
13

From this it would appear that the rate of discharge into a vacuum, which has
generally been supposed to be that which is due to the height of the homogeneous

atmospliere, is in reality that which is due to the (%) th part only; that is, to little

more than the fifteenth part of it; but this requires correction for change of tem-
perature.

28. If the generating piston move forward and then backward, so as to generate a
positive wave followed continuously by a negative wave, they will not separate; for, as
we have seen, they are each transmitted, as wholes, at the same rates/w. But the main
body of the positive wave will gradually advance in the type towards its front, and that
of the negative wave fall back towards its rear; and consequently for the purposes of
audibility the central part of the compound wave, between the front of the positive and
the rear of the negative wave, will become so attenuated that it may be considered of little
audible effect, after the waves have been in existence a sufficient length of time to allow
the formation of bores. The compound wave will therefore have a tendency to produce
the audible effect of two separate waves, separated by an interval of space nearly equal
to its whole length. If therefore the length of such a compound wave be sufficiently
great, it will ultimately produce two distinct sounds separated by a very brief interval of
time.

29. If the generating piston move backward and then forward, so as to generate a
negative wave followed continuously by a positive wave, the positive and negative bores
will destroy each other as rapidly as they are formed. This, however, supposes the
positive and negative portions of the original compound wave to be equal. If one
exceed the other in quantity of motion, the result will be a little modified. A compound
wave of the kind supposed in this article will therefore be entirely devoid of bores, and
the sound corresponding to it will be free from that harshness which is probably the
audible character of a bore.

30. If there be a continuous succession of positive and negative waves, constituting
one long compound wave, such a wave will produce a continuous even sound, called a
musical note, probably owing its sweetness in some degree to the property just men-
tioned ; and as every negative portion is succeeded by a positive portion, and every posi-
tive by a negative, the length of each portion will remain unchangeable, whatever be the

distance through which the compound wave travels. Hence the pitch of a musical note
cannot change by distance of transmission.
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81. Suppose a portion of the tube to be filled with air of a different kind from that
which fills the first part. Let p, ¢, &' be the quantities for this air which correspond to
Do & t of the former; and to prevent the two airs or gases from mixing, let them be
supposed to be separated by an impenetrable film without weight and inertia. Then as
there is equilibrium in the tube before the wave is generated, we have

Do=Po-
Let now a wave be generated in the first medium and transmitted towards the second ;
then when it has reached the common boundary of the media, the velocities of the
particles in contact with the film on both sides will always be equal. Let U’ be this
velocity at any moment, and U the velocity which the film would have had at that
moment, if the second medium had been the same as the first. Then U—T' is the
velocity lost by the particles of the first medium by the resistance due to their contact
with the film. In other words, this velocity has been impressed on the particles of the
first medium by the resistance of the film, in the reflex direction. This gives rise to a
reflex wave in the first medium, which we may consider superimposed on the wind of
the original wave. And consequently if p be the pressure at the film due to the original

wave, the pressure when this reflex wave has been superimposed, 7. e. the actual pressure
u-u 2U—-U" L
at the film, is =ps Y» , which =p,e & , > p=p,e=.

But if we now turn to the other side of the film, the velocity U’ has been impressed

upon the particles of the second medium in contact with the film ; and hence the pressure
of those particles on the film

LN L
—_—P;s“/ll?::_fpog*’?;
and consequently, as the pressures on the two sides are equal, we have
U _eu-U
Vd™ Vi
Hence the velocities of the particles at the film, for the éncident, reflected and refracted
waves, are respectively proportional to

A7y N i, and 20/,

There is nothing new in these formulw®, except that they are here deduced without
supposing the motions small.

II. WAVE MOTION WHEN CHANGE OF TEMPERATURE IS NOT NEGLECTED.

32. The heat developed by that change of temperature which is produced by the
sudden alteration of density due to the passage of a wave, is probably taken account of
by using the following equation as that which connects pressure and density,

P (i) 5
Do o

U2
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k being the ratio of the specific heat of the gas under a constant pressure, to its specific
heat under a constant volume. The dynamical equation takes for this case the following
form to be used instead of that in art. 1,

dy\ ¥+ dQ
(dx) ar —k dxg

This equation being integrated as explained in art. 1, gives

y=az-+ (C_”"‘“ k_l)t+¢(w) | 14)

O0=aan/Tu * t+ap/(%)

33. From these we obtain

For the same reasons as before we shall suppose »=0 and ¢=p¢, to be simultaneous
equations; which gives

C——"_‘:zkl‘:klfba
= (k—1)
. e\ 7 _q—(k=1)u
and - (g()) =1FG ()

This equation gives the relation between density and velocity ; from which that between
pressure and velocity is easily found.

34. The general integral (14.) may be expressed in terms of the original genesis pre-
cisely in the same manner as was employed in art. 4; and the result is

g/—Y+<Zc—t-l-U+\/k;,o>(t . . . . . . . . (16)
w= \/k,/,(1+wk U),':jl(t L. L.an
w=T, andp:po(g;y. a8

These equations, with (15.), are those from which the properties of the motion are to
be deduced. The degree of modification of former results required by these formule
will be in most cases sufficiently evident, and need not therefore to be particularly
pointed out.

35. The result of art. 10 takes the following form—

k—1 k=1 k—1

e? +g? =2¢7%;
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and that of art. 11 the following—

2k 2k
: k=1 k=1 k—1 w1
(p,—-p2)S= Spo{ (1 -I—m U) — (1——2_776_; U) }
36. From (16.) it appears that the velocity of transmission of the front and rear of

either a positive or negative wave is /%w; but the velocity of transmission of that part
of the wave of which the density is ¢, is, for a positive wave,

— k41
\//c‘w-l-—;——U;
—  k+1
VIp——-TU.

The part of these expressions to which the bore is due is the term 11-12_-_1 U; and as £ is

and for a negative wave,

known to be greater than unity, this is greater than U; and consequently change of
temperature hastens the formation of a bore, and also renders the property of art. 16
inapplicable here.

87. As in the case of a negative wave the equation (15.) involves a negative term, it
is manifestly possible for the piston, in generating a negative wave, to move so quickly
as to leave a vacuum behind it. The least velocity with which this can happen is

k—1
which for common air is about 5722 feet per second. But it is necessary to notice, that
in this and similar extreme results, we are hardly justified in supposing % to be constant
up to such high velocities.

38. The expression Sew is a maximum (see art. 24) when

—2 vk
Y=
which in the case of common air is equal to about 904 feet per second; and the corre-
sponding density is .

2 \k=-1
f=(k+1> €05

Hence no gas can rush through a pipe faster than at the rate of
k+1

— 2 =1
V(i)

. 2
or, for common air, about 5 €

cubic feet per second.
39. The change of temperature due to the transmission of a wave through an elastic
medium has been taken account of, by assuming a law different from that of BovyLg, to
connect pressure with density (art. 32).
If we generalize the law by assuming

—af 80
p=0(*):
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the dynamical equation takes the form

If now we assume
(Fap=—2,
%o
the integral of the dynamical equation will be

y=ar+(CtFa)i+ fu,
{x: FFoa.t—fa,

with m:ggg, and u:CiFuzCiF(%’).

40. These equations are true of any motion which can be generated by a piston
moving subject to the laws of continuity. See art. 13. The last shows that the rela-
tion between velocity and density is independent of the law of genesis of the motion.
The medium may be, as a whole, in motion with the uniform velocity C+F(1), and the
motion of the particles caused by the motion of a piston will be superimposed on this.
For convenience we shall suppose the medium as a whole at rest, and .. C+F(1)=0.

If there be a point, or any number of points, within that part of the medium which
is in motion for which g=¢,, for all such points «=1, and the equation

2=FF(1).t—,'(1),
which is always true for all such points, shows that at those points & changes its value
at the rate of F'(1) feet per second, ¢. e. the front of the wave travels at the rate of

(1))
{—fgil-)—} feet per second,
0

which is constant, and depends not at all on the law of genesis, but only on the assumed
relation between pressure and density, and not on the general value of even that, but
only on its limiting value when ¢=g,, Now many different forms of the function ¢ may
give the same limiting value; and consequently all the media corresponding to these
various forms of ¢ will transmit a wave, as a whole, with the same velocity. Hence if
the relation between pressure and density be given, the wave-velocity may be instantly
deduced from the expression { —?—'%}2, or from its equal,

o
de |’

using the subscript 0 to signify that after the differentiation has been performed g, is to
be written for ¢.

41. Since u=C+F (%9 , by differentiation we obtain

du__ __1rdp\*
de_"?(dg) '
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42. And if ¢ denote the velocity of transmission of the density g, then we have

mosr () (2)=3 ()’

%= +; a’e(? Z)

Now the former of these equatlons shows that unless the term (%)2 be constant, the

consequently

property of the superposition of wave-transmission on particle-velocity, proved in art. 16,
does not hold good. But if it be constant, then p=we-+p'; which is the general relation
between pressure and density when that principle of superposition holds good. Hence,
as mentioned in art. 36, the development of heat puts an end to this property in all
known gases.

43. In the case of negative waves we may institute a method of reasoning similar to
that employed in arts. 23 ef seq., and arrive at analogous results. We shall also find

¥
that, taking ¢= (%) —u for this case, the maximum value of Sgw will occur in that

section of the tube where ¢==0; from which it follows that at that section

dp\*,
w=(g)

which is always possible and finite. Hence may be determined the limit to the quantity
of a gas that can pass through a pipe in a given time, even into a vacuum.

44. The expression in art. 42 f01 % ® shows that ¢ is in general a function of g, so that
in general there will be a constant change of type. In one case, however, there will be
no change of type. This will take place when %:0, that is when gz.% is constant.

Assume for this case

dp
32 d_ng’
B
CoPp=A—~=
P 4

This equation expresses the nature of the medium which is distinguished by the pro-

perty, that it transmits waves without change of type. And if we pass from this to the
dynamical equation, we find

Now it has been usual to reduce the equation (3.) to this form for the purposes of
approximation; but the process appears to be allowable only so far as the equation

p=A—-—§— may be taken to be a physical approximation to BoyLE's law p=we. To me it

does not seem to be an allowable approximation; and consequently I do not consider
the solution of the dynamical equation, which has been obtained by this means, to be



148 THE REV. S. EARNSHAW ON THE MATHEMATICAL THEORY OF SOUND.

applicable to the problem of sound at all. Many enalytically approximate forms might
be invented and used for BoyLe’s law, and each would have its peeuliar physical attri-
butive effects on the sound-wave; and we might thus, by adopting first one and then
another of these analytically approximate laws, invent ad libitum an inexhaustible list
of properties of the sound-wave which have no real existence where BoyLr’s law is
strictly true. From which therefore it would seem to be a necessary consequence, that
an equation betweeén p and ¢ must not only be analytically but also physically approxi-
mative, in order that the results deduced from it may be accepted as real approximations.
to the true laws of nature.

. d .
45. By means of the expressions for d—: and g—;—, we may not only discover the proper-

ties of motion in a tube without having recourse to the usual equations, when the rela-
tion between ¢ and p is known, but we may also solve many inverse problems.

Also, if the tube be filled with a medium of such a nature that the relation between
p and ¢ changes continuously from point to point, or is different in different parts, yet

if (%) has the same value everywhere, waves will travel through the tube with a
0

uniform velocity.
If the nature of the medium should vary slowly and continuously, the velocity of the
wave-transmission would be known, from the equations given above, by integration.
46. If, through the partial radiation of heat, or from any other cause, the dynamical
equation should take the form
Py__ oy &y
= &)

we must integrate it as before by assuming
YL AT
%-F(@ ;

(Fa)=f (e, Fa).
This equation being integrated will furnish the form of F; and then the integral of the
proposed dynamical equation will be

(y=so-+(O o)t
ch.—_— F¥o.t—¢,

which gives

which does not present any new difficulty.



